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Abstract. An asymptotic formula for the energy eigenvalues of a charged particle contained
in a cylindrical shell is derived. The formula is used to estimate the eigenvalues when there
is a cylindrically symmetric static magnetic-induction field present and the system exhibits the
bound-state Aharonov–Bohm effect. It is shown that the errors involved form an`2 sequence
with terms labelled by the radial quantum number. Numerical approximations obtained from the
asymptotic formula are compared to those obtained from analytical solutions of Schrödinger’s
equation in the following two cases. (i) There is no magnetic-induction field in the shell itself
but there is a field inside the inner cylinder. (ii) There is a constant magnetic-induction field
in the shell as well as a (possibly different) field inside the inner cylinder. In these cases, the
radial eigenfunctions are expressible in terms of Bessel functions and confluent hypergeometric
functions, respectively. The numerical results are consistent with the asymptotic character of
the formula for the energy eigenvalues.

1. Introduction

The bound-state Aharonov–Bohm effect is manifest in the shifts that occur in the discrete
energy spectrum of a charged particle when a static magnetic-induction field threads
a multiply connected space region to which the particle is restricted. The energy
eigenfunctions and associated position probability densities are also changed by the field.
This effect is the bound-state counterpart of the well known scattering Aharonov–Bohm
effect [1]. Both effects are periodic in the flux of the threading field with period equal to
London’s natural unit of magnetic flux. Several aspects of the bound-state effect have been
considered by Peshkin [2, 3], Peshkin and Tonomura [4] and O’Raifeartaighet al [5, 6].

In this paper, we derive an asymptotic formula for the energy eigenvalues when the
particle is contained in a cylindrical shell and the magnetic-induction field is cylindrically
symmetric and parallel to the axis of the shell. The formula gives an arbitrarily close
approximation to the energy for sufficiently large values of the radial quantum number and
fixed values of both the angular-momentum quantum number and the quantum number for
motion parallel to the axis. It is shown that the bound-state Aharonov–Bohm effect exists
and that the asymptotic formula can be applied when there is a magnetic-induction field in
the shell as well as one inside the inner cylinder. Numerical comparisons are made in two
cases for which analytical solutions of Schrödinger’s equation can be found. In the first
case, there is no field in the shell and in the second, there is a constant field in the shell that
may differ in magnitude and sense from the field inside the inner cylinder. In both cases,
the results indicate that the approximations obtained from the asymptotic formula improve
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as the radial quantum number increases while the other quantum numbers and parameters
of the system are fixed.

2. Bound-state Aharonov–Bohm effect

We consider a particle of massm and chargee† constrained by perfectly reflecting walls to
remain in the cylindrical shellS defined in terms of cylindrical polar coordinates(ρ, θ, z)
by a 6 ρ 6 b, 0 6 θ < 2π and 06 z 6 d, wherea, b andd are positive constants and
a < b. It will be assumed that there is a cylindrically symmetric static magnetic-induction
field B of the formBẑ present.B must be a function ofρ only in order forB to satisfy
the Maxwell equation∇ · B = 0. It is possible [3] to expressB in terms of a vector
potentialA of the formAθ̂ whereA also is a function ofρ only. A is continuous, ifB
is piecewise continuous. The vector potential satisfies not only∇ ×A = B but also the
Coulomb-gauge condition∇ ·A = 0. In the shellS,

A(ρ) = 8

2π

1

ρ
+ A0(ρ) (1)

where8 is the magnetic flux (in the sense ofẑ) through a cross section of the inner cylinder
ρ = a and

A0(ρ) = 1

ρ

∫ ρ

a

B(ρ ′)ρ ′ dρ ′. (2)

It should be noted thatA0θ̂ is the vector potential inS when the confined flux8 is zero. It
will be convenient to scale the confined flux with respect to London’s unithc/e (in which
h is Planck’s constant andc is the speed of lightin vacuo) and to define the dimensionless
flux constantf by f = e8/(hc).

The θ - and z-dependent parts of the energy eigenfunction for a given stationary state
are independent off but the radial partRnλ(ρ) is flux dependent. It satisfies the radial
Schr̈odinger equation

ρ2R′′nλ + ρR′nλ +
[
α2
nλρ

2−
(
λ− 2πe

hc
ρA0

)2]
Rnλ = 0. (3)

Here the positive integern is the radial quantum number andλ = l − f , where the integer
l is the quantum number for thez component of the canonical angular momentum. The
eigenvaluesα2

nλ are determined by the boundary conditions

Rnλ(a) = 0= Rnλ(b). (4)

That these eigenvalues must be non-negative can be seen from the fact that they are
independent of the quantum numbers for motion parallel to thez axis (s = 1, 2, . . .)
and from the fact that the energy eigenvalues, which are given by

Enλs = h2

8π2m

[
α2
nλ +

( sπ
d

)2
]

(5)

are non-negative‡ for arbitrarily large values of the heightd of the cylindrical shell. We
will take αnλ also to be non-negative. Sturm–Liouville theory [7] guarantees that for given

† We usee to denote the signed charge of the particle. Thus, for an electrone = −e0 wheree0 ' 4.803×10−10 esu.
‡ This follows from the form1

2mṙ
2 of the Hamiltonian and the fact that with the given boundary conditions the

velocity operatorṙ is Hermitian. The energy must in fact be positive. For if it were zero, the ground state of
the system would be an eigenstate ofṙ with eigenvalue zero. This, however, would contradict the uncertainty
relations that follow from the commutation relations between the components ofr and ṙ.
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A0 andλ, the constantsαnλ form an unbounded denumerable set and hence that they may
be labelled by the positive integern. Furthermore, the eigenfunctionsRnλ (again for fixed
A0 andλ) form an orthogonal set on [a, b] with respect to the weight functionρ and may
be chosen to be normalized with respect to this weight function.

The effect of the confined field is determined solely by the scaled fluxf and is manifest
by the appearance ofλ, or l − f , in equations (3) and (5) where onlyl would otherwise
occur. For a given field in the cylindrical shell, the wave functions and energy levels of
the system depend on the confined field and the charge of the particle throughf , even
though the particle cannot penetrate the confined field†. This is the bound-state Aharonov–
Bohm effect‡. Only values off in the interval [0, 1) need be considered, as the eigenvalue
spectrum and the set of eigenstates are invariant under the addition of an arbitrary integer
to f [4].

3. Asymptotic formula

In this section we derive an asymptotic formula for the energy eigenvalues by transforming
the radial Schr̈odinger equation (3) and the boundary conditions (4) into the boundary-value
problem

−y ′′n + qyn = νnyn
yn(0) = 0= yn(1)

(6)

wheren is a positive integer, dashes denote derivatives with respect to the independent
variablex and the coefficientq is a function ofx. Approximations to the eigenvalues of
this problem can be obtained by using the following result [7].

Lemma. If q ∈ L2[0, 1], the eigenvaluesνn of the regular Sturm–Liouville problem (6)
satisfy the asymptotic relationship

νn = n2π2+
∫ 1

0
q(x) dx + `2(n) n = 1, 2, . . . . (7)

In other words
∞∑
n=1

∣∣∣∣νn − n2π2−
∫ 1

0
q(x) dx

∣∣∣∣2 <∞. (8)

We remark that both the eigenvaluesνn and the`2 sequence appearing above are
functionals of the coefficient functionq. The self-adjoint form of the radial Schrödinger
equation (3), together with the boundary conditions (4) constitute the regular Sturm–
Liouville problem

− d

dρ

(
ρ

dRnλ
dρ

)
+ ρQλRnλ = α2

nλρRnλ

Rnλ(a) = 0= Rnλ(b)
(9)

in which

Qλ(ρ) =
[
λ

ρ
− 2πe

hc
A0(ρ)

]2

. (10)

† See also the discussion in [4]. Here we do not assume that the field in the shell has to be zero.
‡ Since it is energy differences rather than energy levels that are observable, the effect is manifest in the spectrum
only if the change in energy due to the confined field is not the same for every state. That this is indeed the
case can be seen from the asymptotic formula developed in section 3 and from the numerical results of sections 4
and 5.
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Under the change of variables

x = ρ − a
b − a and yn(x) = √ρRnλ(ρ) (11)

wherea, b, A0 andλ are all fixed, the Sturm–Liouville problem (9) is transformed into (6)
with

q(x) = (b − a)2
[
Qλ(ρ)− 1

4ρ2

]
(12)

and

νn = (b − a)2α2
nλ. (13)

In our applications,B is piecewise continuous andA0 is continuous and so the functionq
defined by equation (12) is certainly in the classL2[0, 1]. It follows from the lemma and
equations (10), (12) and (13) that

α2
nλ =

n2π2

(b − a)2 −
1

4ab
+ 1

b − a
∫ b

a

[
λ

ρ
− 2πe

hc
A0(ρ)

]2

dρ + 1

(b − a)2`
2(n) (14)

where thè 2 sequence depends onA0, λ, a, b and e. Omission of thenth term of the`2

sequence in equation (14) gives an approximation toα2
nλ that is arbitrarily close to the exact

value whenn is sufficiently large and other quantum numbers and parameters are fixed. The
expression (5) will then give a corresponding approximation to the energy eigenvaluesEnλs .
For givena, b, e andA0, the first term on the right-hand side of equation (14) depends on
n only, the second term is constant and the third term depends onl and f through their
differenceλ but is independent ofn.

4. Zero field in shell

If there is no magnetic-induction field in the shellS, the functionA0 in equation (2) is
identically zero and the asymptotic formula (14) gives

α2
nλ '

n2π2

(b − a)2 +
λ2− 1

4

ab
(15)

for largen. Numerical approximations obtained from this expression will now be compared
to those obtained from the analytical solution of Schrödinger’s equation. For in this case
the radial equation (3) reduces to Bessel’s equation of orderλ with parameterαnλ, which
is positive†. An unnormalized eigenfunction is given by

Jλ(αnλa)Yλ(αnλρ)− Yλ(αnλa)Jλ(αnλρ). (16)

This obviously satisfies the boundary condition atρ = a and will satisfy the boundary
condition atρ = b also if αnλ (n = 1, 2, . . .) is a positive root of the equation

Jλ(αa)Yλ(αb)− Yλ(αa)Jλ(αb) = 0 (17)

in which a, b andλ are fixed. Approximations toα2
nλ for several values ofn andλ were

obtained by using the computer algebra systemMaple‡ to solve equation (17) numerically.
For comparison purposes, the approximations are tabulated in table 1, together with the

† We have seen in section 2 thatαnλ may always be taken to be non-negative. Ifαnλ is zero, then the radial
Schr̈odinger equation is a Cauchy–Euler differential equation (rather than the parametric form of Bessel’s equation)
of which only the zero solution satisfies the boundary conditions ata andb.
‡ Maple V, Release 4 was used. The relevantMaple commands areBesselJ, BesselYand fsolve.
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Table 1. Approximations toα2
nλ obtained from the asymptotic formula are shown in columns

labelledA and those obtained from the solution of the parametric form of Bessel’s equation are
shown in columns labelledB. n is the radial quantum number andλ = l − f , wherel is the
angular-momentum quantum number andf is the scaled flux of the confined field. The field in
the cylindrical shell is zero and the inner and outer radiia and b of the shell are taken to be
1 and 2, respectively, in arbitrary length units.

λ = 0 λ = −0.35 λ = 4.65

n A B A B A B

1 9.744 60 9.753 32 9.805 85 9.810 31 20.555 85 19.609 67
2 39.353 42 39.356 00 39.414 67 39.415 98 50.164 67 49.982 56
3 88.701 44 88.702 63 88.762 69 88.763 30 99.512 69 99.446 42
4 157.788 67 157.789 35 157.849 92 157.850 27 168.599 92 168.566 09
5 246.615 11 246.615 55 246.676 36 246.676 58 257.426 36 257.405 78
6 355.180 76 355.181 07 355.242 01 355.242 16 365.992 01 365.978 13
7 483.485 62 483.485 84 483.546 87 483.546 98 494.296 87 494.286 85
8 631.529 68 631.529 85 631.590 93 631.590 12 642.340 93 642.333 36
9 799.312 96 799.313 09 799.374 21 799.374 28 810.124 21 810.118 27

10 986.835 44 986.835 55 986.896 69 986.896 75 997.646 69 997.641 91

corresponding approximations obtained from the expression (15). In calculating the table
entries, the inner and outer radiia and b of the cylindrical shell were set to 1 and 2,
respectively. The unit of length to be used fora andb (and for the cylinder heightd) is
arbitrary†. The table contains approximations toα2

nλ in units of the square of the reciprocal
of the chosen unit of length; approximations toEnλs in the corresponding energy units can
then be obtained from equation (5). It is clear from table 1 that for the parameter values
considered, the asymptotic formula gives better approximations toα2

nλ asn increases, with
λ being fixed.

It is interesting to note that whenλ = 1
2, the asymptotic expression (15) is exact for all

positive integersn. This may be shown by using the identities [9]

J 1
2
(x) =

√
2

πx
sinx and Y 1

2
(x) =

√
2

πx
cosx (18)

to obtain the exact solutions

αn, 1
2
= nπ

b − a (19)

of equation (17) for this case. The corresponding normalized radial eigenfunctions are given
by

Rn, 1
2
(ρ) =

√
2

(b − a)ρ sin

(
nπ
ρ − a
b − a

)
(20)

and obviously satisfy the boundary conditions (4).

† The cylindrical-shell geometry used to model the bound-state Aharonov–Bohm effect is topologically equivalent
to the toroidal geometry used in experimental verifications of the scattering Aharonov–Bohm effect by Tonomura
et al (see [4] and references therein). In these experiments, the dimensions of the toroidal ferromagnet covered
with superconducting material and used to scatter the electrons were of the order of a few microns. Similarly,
recent experimental studies of Aharonov–Bohm rings containing quantum dots (see [8] and references therein)
involve approximations to the cylindrical-shell geometry with inner and outer radii of less than 1 micron.
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5. Constant non-zero field in shell

If there is a constant non-zero longitudinal magnetic-induction field inS, then equation (2)
implies that

2πe

hc
ρA0 = f ′

[(
ρ

a

)2

− 1

]
(21)

wheref ′ is the scaled flux (in units ofhc/e) that the field in the shell would have if this
field were inside the inner cylinder. The asymptotic formula (14) now gives

α2
nλ '

n2π2

(b − a)2 +
(λ+ f ′)2− 1

4

ab
− 2f ′(λ+ f ′)

a2
+ f

′2(a2+ ab + b2)

3a4
. (22)

As expected, this reduces to the asymptotic formula (15) of section 4 in the limit asf ′ → 0.
It will be assumed in what follows that the sense of thez axis is chosen so thatf ′ > 0.
For numerical comparison purposes, it will also be assumed that the difference between
the scaled fluxesf andf ′ is not an integer†. For the general solution of equation (3) can
then be expressed‡ in terms of the confluent hypergeometric functionF , which has two
parameters and one argument. The eigenfunctionRnλ is proportional to

exp

(
− f

′

2a2
ρ2

)[(
ρ

a

)µ
F2(βnλ, a)F1(βnλ, ρ)−

(
a

ρ

)µ
F1(βnλ, a)F2(βnλ, ρ)

]
(23)

where the functionsF1 andF2 are defined by

F1(β, ρ) = F
(
−β + 1

2
µ+ 1

2
, 1+ µ, f

′

a2
ρ2

)
(24)

and

F2(β, ρ) = F
(
−β − 1

2
µ+ 1

2
, 1− µ, f

′

a2
ρ2

)
. (25)

Also βnλ is given in terms ofαnλ by

βnλ = a2

4f ′
α2
nλ +

1

2
µ (26)

andµ = λ+ f ′. Expression (23) obviously satisfies the boundary condition atρ = a and
will satisfy the boundary condition atρ = b also if βnλ is a root of the equation(

b

a

)µ
F2(β, a)F1(β, b)−

(
a

b

)µ
F1(β, a)F2(β, b) = 0. (27)

It should be noted from equation (26) thatβnλ cannot be less thanµ/2.

† The asymptotic formula (22) is of course valid whetherf − f ′ is an integer or not.
‡ If f −f ′ is an integer, one of the two solutions appearing in equation (23) is either undefined or a multiple of the
other solution and any second linearly independent solution contains a logarithmic term as well as another power
series. This case occurs in the derivation of the Landau levels of a charged particle in an everywhere-constant
magnetic-induction field (see [10]), since thenf ′ = f . However, a second independent solution is not required in
this problem, as only the first solution gives a wavefunction that is bounded asρ →∞. Moreover, the confluent
hypergeometric function in the first solution reduces to an associated Laguerre polynomial. In the cylindrical-shell
problem considered here, two independent solutions are required in order to satisfy the boundary conditions at
a andb.
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Table 2. Approximations toα2
nλ obtained from the asymptotic formula are shown in columns

labelledA and those obtained from the solution of the confluent hypergeometric equation are
shown in columns labelledC. n is the radial quantum number andλ = l − f , wherel is the
angular-momentum quantum number andf is the scaled flux of the confined field. The scaled
flux f ′ corresponding to the field in the cylindrical shell is taken to be 0.3 and the inner and
outer radiia andb of the shell are taken to be 1 and 2, respectively, in arbitrary length units.

λ = 0 λ = −0.35 λ = 4.65

n A C A C A C

1 9.819 60 9.820 49 9.985 85 9.989 75 19.235 85 18.137 26
2 39.428 42 39.428 97 39.594 67 39.596 13 48.844 67 48.639 27
3 88.776 44 88.776 72 88.942 69 88.943 40 98.192 69 98.120 68
4 157.863 67 157.863 84 158.029 92 158.030 33 167.279 92 167.243 94
5 246.690 11 246.690 22 246.856 36 246.856 63 256.106 36 256.084 73
6 355.255 76 355.255 83 355.422 01 355.422 19 364.672 01 364.657 52
7 483.560 62 483.560 67 483.726 87 483.727 00 492.976 87 492.966 46
8 631.604 68 631.604 73 631.770 93 631.771 04 461.020 93 461.013 09
9 799.387 96 799.387 99 799.554 20 799.554 29 808.804 21 808.798 07

10 986.910 44 986.910 47 987.076 69 987.076 76 996.326 69 996.321 76

Numerical solutions of equation (27) witha = 1, b = 2 andf ′ = 0.3 were obtained by
usingMaple†. Approximations toα2

nλ were then calculated from the relation

α2
nλ =

2f ′

a2

(
2βnλ − λ− f ′

)
(28)

which follows from inversion of equation (26). These approximations may be compared in
table 2 with the approximations obtained from the asymptotic formula (22). The increasing
accuracy of the asymptotic formula for fixedf ′ andλ and increasingn is evident from the
table.

6. Conclusions

Analytical solutions of the radial Schrödinger equation for the bound-state Aharonov–Bohm
effect in a cylindrical shell are known only in certain simple cases and even in these cases
there is no formula for calculating the energy eigenvalues exactly. We have derived an
asymptotic formula that enables numerical approximations to the energy eigenvalues to be
obtained when the radial quantum number is large and the other quantum numbers and
parameters of the system are fixed. The errors involved in making these approximations
form an`2 sequence with terms labelled by the radial quantum number.

The general solution of the radial equation is expressible in terms of Bessel functions
for the case in which there is no field in the cylindrical shell. Numerical approximations
obtained by using this solution confirm the validity of the asymptotic formula for this case;
in particular, for the parameter values used, the formula becomes more accurate as the
radial quantum number increases. Similar numerical confirmation was obtained for the case
in which there is a constant non-zero field in the shell as well as a confined field inside
the inner cylinder. Here the general solution of the radial equation is expressible in terms
of confluent hypergeometric functions. The computer algebra systemMaple was used to

† The hypergeometric functions may be evaluated inMaple by first entering the commandreadlib(hypergeom)
and then using thehypergeomcommand.
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obtain numerical solutions of the transcendental equations resulting from imposition of the
boundary conditions in these two cases.
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