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Abstract. An asymptotic formula for the energy eigenvalues of a charged particle contained
in a cylindrical shell is derived. The formula is used to estimate the eigenvalues when there
is a cylindrically symmetric static magnetic-induction field present and the system exhibits the
bound-state Aharonov—Bohm effect. It is shown that the errors involved forid? aequence

with terms labelled by the radial quantum number. Numerical approximations obtained from the
asymptotic formula are compared to those obtained from analytical solutions didBuler’s
equation in the following two cases. (i) There is no magnetic-induction field in the shell itself
but there is a field inside the inner cylinder. (ii) There is a constant magnetic-induction field
in the shell as well as a (possibly different) field inside the inner cylinder. In these cases, the
radial eigenfunctions are expressible in terms of Bessel functions and confluent hypergeometric
functions, respectively. The numerical results are consistent with the asymptotic character of
the formula for the energy eigenvalues.

1. Introduction

The bound-state Aharonov—Bohm effect is manifest in the shifts that occur in the discrete
energy spectrum of a charged particle when a static magnetic-induction field threads
a multiply connected space region to which the particle is restricted. The energy
eigenfunctions and associated position probability densities are also changed by the field.
This effect is the bound-state counterpart of the well known scattering Aharonov—Bohm
effect [1]. Both effects are periodic in the flux of the threading field with period equal to
London’s natural unit of magnetic flux. Several aspects of the bound-state effect have been
considered by Peshkin [2, 3], Peshkin and Tonomura [4] and O’Raifeargaigh[5, 6].

In this paper, we derive an asymptotic formula for the energy eigenvalues when the
particle is contained in a cylindrical shell and the magnetic-induction field is cylindrically
symmetric and parallel to the axis of the shell. The formula gives an arbitrarily close
approximation to the energy for sufficiently large values of the radial quantum number and
fixed values of both the angular-momentum quantum number and the quantum number for
motion parallel to the axis. It is shown that the bound-state Aharonov—Bohm effect exists
and that the asymptotic formula can be applied when there is a magnetic-induction field in
the shell as well as one inside the inner cylinder. Numerical comparisons are made in two
cases for which analytical solutions of Séimger’'s equation can be found. In the first
case, there is no field in the shell and in the second, there is a constant field in the shell that
may differ in magnitude and sense from the field inside the inner cylinder. In both cases,
the results indicate that the approximations obtained from the asymptotic formula improve
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as the radial quantum number increases while the other quantum numbers and parameters
of the system are fixed.

2. Bound-state Aharonov—Bohm effect

We consider a particle of mass and charge:t constrained by perfectly reflecting walls to
remain in the cylindrical shelf defined in terms of cylindrical polar coordinatés, 6, z)

bya <p<b 0<6 <27 and 0< z < d, wherea, b andd are positive constants and

a < b. 1t will be assumed that there is a cylindrically symmetric static magnetic-induction
field B of the form Bz present.B must be a function op only in order for B to satisfy

the Maxwell equationV - B = 0. It is possible [3] to expres®8 in terms of a vector
potential A of the form AO where A also is a function ofp only. A is continuous, ifB

is piecewise continuous. The vector potential satisfies not ®hly A = B but also the
Coulomb-gauge conditio - A = 0. In the shells,

P 1
A(p) = 2 p + Ao(p) (1)

where® is the magnetic flux (in the sense »f through a cross section of the inner cylinder
o =a and

1 P
Ao(p) = P / B(p")p' dp’. (2

It should be noted tha&oé is the vector potential it when the confined flux is zero. It
will be convenient to scale the confined flux with respect to London’s junjié (in which
h is Planck’s constant andis the speed of lighin vacug and to define the dimensionless
flux constantf by f = e®/(hc).

The 6- and z-dependent parts of the energy eigenfunction for a given stationary state
are independent of but the radial partR,; (o) is flux dependent. It satisfies the radial
Schidinger equation

" / 27T€ 2
IOZRn)L + IORn)L + |:a3)hp2 - (A - ?,()A()) ]Rl’ll =0. (3)
Here the positive integer is the radial quantum number and= [ — f, where the integer

[ is the quantum number for the component of the canonical angular momentum. The
eigenvaluesy?, are determined by the boundary conditions

Rnk(a) =0= Rn)\(b) (4)

That these eigenvalues must be non-negative can be seen from the fact that they are
independent of the quantum numhberfor motion parallel to the; axis ¢ = 1,2,...)
and from the fact that the energy eigenvalues, which are given by

h? 2 ST\ 2
B = gz |+ (7)) ®

are non-negativiefor arbitrarily large values of the heiglat of the cylindrical shell. We
will take «,; also to be non-negative. Sturm-—Liouville theory [7] guarantees that for given

T We usee to denote the signed charge of the particle. Thus, for an eleetzor-¢o whereeg ~ 4.803x 1010 esu.

i This follows from the form%mi*2 of the Hamiltonian and the fact that with the given boundary conditions the
velocity operatorr is Hermitian. The energy must in fact be positive. For if it were zero, the ground state of
the system would be an eigenstatesofvith eigenvalue zero. This, however, would contradict the uncertainty
relations that follow from the commutation relations between the componentsoé 7.
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Ap and A, the constants,,; form an unbounded denumerable set and hence that they may
be labelled by the positive integer Furthermore, the eigenfunctiom,; (again for fixed
Ag and ) form an orthogonal set oru[ b] with respect to the weight function and may
be chosen to be normalized with respect to this weight function.

The effect of the confined field is determined solely by the scaledfflaxd is manifest
by the appearance of, or / — f, in equations (3) and (5) where onlywould otherwise
occur. For a given field in the cylindrical shell, the wave functions and energy levels of
the system depend on the confined field and the charge of the particle thfquglen
though the particle cannot penetrate the confinedifieldhis is the bound-state Aharonov—
Bohm effect. Only values off in the interval [0 1) need be considered, as the eigenvalue
spectrum and the set of eigenstates are invariant under the addition of an arbitrary integer

to f [4].

3. Asymptotic formula

In this section we derive an asymptotic formula for the energy eigenvalues by transforming
the radial Schizdinger equation (3) and the boundary conditions (4) into the boundary-value
problem

—Vn V0 = Va¥n
yn(o) =0= yn(l)
wheren is a positive integer, dashes denote derivatives with respect to the independent

variablex and the coefficieng is a function ofx. Approximations to the eigenvalues of
this problem can be obtained by using the following result [7].

Lemma. If ¢ € L?[0,1], the eigenvalues, of the regular Sturm—Liouville problem (6)
satisfy the asymptotic relationship

(6)

1
vn:nznz—}—/ g(x) dx + £%(n) n=12.... )
0

In other words

o0

2

n=1
We remark that both the eigenvalues and the¢? sequence appearing above are
functionals of the coefficient function. The self-adjoint form of the radial Sdbdinger
equation (3), together with the boundary conditions (4) constitute the regular Sturm-—
Liouville problem

2

1
v, — n’n? _/0 q(x) dx| < oo. (8)

-5 — nx = o n
dp 1Y dp P Un Ky AP Ly ©)
Rnk(a) =0= Rn)»(b)
in which
A2 2
0:(p) = [; - %Ao(p)] : (10)

1 See also the discussion in [4]. Here we do not assume that the field in the shell has to be zero.

i Since it is energy differences rather than energy levels that are observable, the effect is manifest in the spectrum
only if the change in energy due to the confined field is not the same for every state. That this is indeed the
case can be seen from the asymptotic formula developed in section 3 and from the numerical results of sections 4
and 5.
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Under the change of variables

—da
= and 3,00 = VARu(0) (11)
wherea, b, Ag andi are all fixed, the Sturm—Liouville problem (9) is transformed into (6)
with

X =

1
q(x) = (b - a)Z[QA(m - ﬁ} (12)
0
and
v, = (b — a)a?,. (13)

In our applicationsB is piecewise continuous amdl, is continuous and so the functign
defined by equation (12) is certainly in the clas40, 1]. It follows from the lemma and
equations (10), (12) and (13) that

2 n’m? 1 N 1 /b A ZneA()zd N
Uy = ———— — — - — -
T —a2  dab ' b—al, o) BT a2

0 he
where the¢? sequence depends oy, A, a, b ande. Omission of thenth term of the¢?
sequence in equation (14) gives an approximatiomothat is arbitrarily close to the exact
value whem: is sufficiently large and other quantum numbers and parameters are fixed. The
expression (5) will then give a corresponding approximation to the energy eigen¥glyes
For givena, b, e and Ay, the first term on the right-hand side of equation (14) depends on
n only, the second term is constant and the third term dependsaoil f through their
differenceA but is independent of.

3(n) (14)

4. Zero field in shell

If there is no magnetic-induction field in the shél] the functionAg in equation (2) is
identically zero and the asymptotic formula (14) gives

2.2 2_ 1
2 n M—a

~ + 15
= b—a2 " ab (19)

for largen. Numerical approximations obtained from this expression will now be compared
to those obtained from the analytical solution of Salinger's equation. For in this case
the radial equation (3) reduces to Bessel's equation of oxrdeith parametew,;, which
is positivel. An unnormalized eigenfunction is given by

Dlana)Yi(anp) — Y (ana) Jr (o). (16)
This obviously satisfies the boundary conditionmat= a and will satisfy the boundary
condition atp = b also ifa,;, (n =1, 2,...) is a positive root of the equation

Ji(@a)Ys (ab) — Y, (xa)J,(ab) =0 a7

in which a, b and 1 are fixed. Approximations te?, for several values ok andx were
obtained by using the computer algebra sysMaplef to solve equation (17) numerically.
For comparison purposes, the approximations are tabulated in table 1, together with the

1 We have seen in section 2 that, may always be taken to be non-negative.«}f, is zero, then the radial
SchiBdinger equation is a Cauchy—Euler differential equation (rather than the parametric form of Bessel’'s equation)
of which only the zero solution satisfies the boundary conditions a@td b.

i Maple V, Release 4 was used. The relevifdaple commands ar8essel] BesselYandfsolve
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Table 1. Approximations to(xf.A obtained from the asymptotic formula are shown in columns
labelled A and those obtained from the solution of the parametric form of Bessel's equation are
shown in columns labelle®. rn is the radial quantum number and= [ — f, where!l is the
angular-momentum guantum number ands the scaled flux of the confined field. The field in
the cylindrical shell is zero and the inner and outer radand b of the shell are taken to be

1 and 2, respectively, in arbitrary length units.

r=0 L =-0.35 L =465

n A B A B A B
1 9.744 60 9753 32 9805 85 9810 31 20555 85 19609 67
2 3935342 39356 00 39414 67 391598 50164 67 49982 56
3 8870144 88702 63 88762 69 88763 30 99512 69 99446 42
4 157788 67 157789 35 157849 92 157850 27 16899 92 168566 09
5 24661511 246851555 2467636 24667658 257426 36 257405 78
6 35518076 35518107 35524201 35324216 36999201 36597813
7 48348562 48348584 4834687 483H4698 49429687 494286 85
8 63152968 63152985 63159093 63159012 642340 93 642333 36
9 79931296 7901309 7987421 799067428 81012421 81011827
10 98683544 98833555 98639669 986396 75 99764669 99764191

corresponding approximations obtained from the expression (15). In calculating the table
entries, the inner and outer radii and b of the cylindrical shell were set to 1 and 2,
respectively. The unit of length to be used forand b (and for the cylinder height) is
arbitraryt. The table contains approximationsdg, in units of the square of the reciprocal
of the chosen unit of length; approximationsg,, in the corresponding energy units can
then be obtained from equation (5). It is clear from table 1 that for the parameter values
considered, the asymptotic formula gives better approximationg,t@sn increases, with
A being fixed.

It is interesting to note that when= % the asymptotic expression (15) is exact for all
positive integers:. This may be shown by using the identities [9]

/2 /2
Ji(x) =,/ — sinx and Yi(x) =,/ — cosx (18)
2 TX 2 TX

to obtain the exact solutions
ni

b—a

of equation (17) for this case. The corresponding normalized radial eigenfunctions are given

by

a (19)

n

(NI

_ 2 . p—a
R, 1 (p) = —(b s Sln<n7'r ) ) (20)

—da
and obviously satisfy the boundary conditions (4).

1 The cylindrical-shell geometry used to model the bound-state Aharonov—Bohm effect is topologically equivalent
to the toroidal geometry used in experimental verifications of the scattering Aharonov—Bohm effect by Tonomura
et al (see [4] and references therein). In these experiments, the dimensions of the toroidal ferromagnet covered
with superconducting material and used to scatter the electrons were of the order of a few microns. Similarly,
recent experimental studies of Aharonov—Bohm rings containing quantum dots (see [8] and references therein)
involve approximations to the cylindrical-shell geometry with inner and outer radii of less than 1 micron.
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5. Constant non-zero field in shell

If there is a constant non-zero longitudinal magnetic-induction fielf,ithen equation (2)

implies that

2 2

o= r[(2) o
C a

where 1’ is the scaled flux (in units ofic/e) that the field in the shell would have if this
field were inside the inner cylinder. The asymptotic formula (14) now gives

2~ n?mn? O+ fH2—3 C2f' G+ 1) N f?(a?+ab + b
(b —a)? ab a? 3a? '

As expected, this reduces to the asymptotic formula (15) of section 4 in the lirfiit-as0.

It will be assumed in what follows that the sense of thaxis is chosen so that’ > 0.

For numerical comparison purposes, it will also be assumed that the difference between
the scaled fluxeg and f’ is not an integer. For the general solution of equation (3) can
then be expressédn terms of the confluent hypergeometric functiéh which has two
parameters and one argument. The eigenfunckignis proportional to

(22)

f/ ) 0 123 a I
exp\ — 527 — | F2(Bu. @) Fa(Bs, p) — | — ) F1(Bur, @) F2(Bus, p) (23)
a a 0
where the functiong; and F, are defined by
1 1 !
Fi(B, p) = F(—ﬁ topt s 1t sz2> (24)
a
and
1 1 !
a
Also B,; is given in terms ofy,; by
2
Y
Bur. = 4f/0ln)\ + 2:“ (26)

andu = A + f'. Expression (23) obviously satisfies the boundary conditiop ata and
will satisfy the boundary condition at = b also if 8, is a root of the equation

b\* a\*
(;) F2(B,a)F1(B, b) — (5) Fi(B, a)F2(B,b) = 0. (27)
It should be noted from equation (26) that, cannot be less than/2.

1 The asymptotic formula (22) is of course valid whethfer f’ is an integer or not.

i If f— f’is aninteger, one of the two solutions appearing in equation (23) is either undefined or a multiple of the
other solution and any second linearly independent solution contains a logarithmic term as well as another power
series. This case occurs in the derivation of the Landau levels of a charged particle in an everywhere-constant
magnetic-induction field (see [10]), since thgh= f. However, a second independent solution is not required in

this problem, as only the first solution gives a wavefunction that is bounded-as>. Moreover, the confluent
hypergeometric function in the first solution reduces to an associated Laguerre polynomial. In the cylindrical-shell
problem considered here, two independent solutions are required in order to satisfy the boundary conditions at
a andb.
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Table 2. Approximations to(xf.A obtained from the asymptotic formula are shown in columns
labelled A and those obtained from the solution of the confluent hypergeometric equation are
shown in columns labelled. » is the radial quantum number and= [ — f, where!/ is the
angular-momentum quantum number afids the scaled flux of the confined field. The scaled
flux f’ corresponding to the field in the cylindrical shell is taken to be 0.3 and the inner and
outer radiia andb of the shell are taken to be 1 and 2, respectively, in arbitrary length units.

r=0 L =-0.35 L =465

n A C A C A C
1 9.819 60 9820 49 9985 85 9989 75 19235 85 18137 26
2 39428 42 392897 39594 67 39596 13 48344 67 48639 27
3 88776 44 88776 72 88942 69 88943 40 98192 69 98120 68
4 157863 67 157863 84 158029 92 158030 33 167279 92 167243 94
5 24669011 246590 22 24856 36 246356 63 256106 36 258084 73
6 35525576 35325583 35542201 3542219 36467201 364657 52
7 48356062 483%B6067 48372687 48372700 49207687 492966 46
8 63160468 631604 73 63177093 63177104 46102093 46101309
9 79938796 7908799 7995420 799654 29 8080421 808798 07
10 98691044 98601047 987M7669 987M7676 99632669 996321 76

Numerical solutions of equation (27) with= 1, » = 2 and f’ = 0.3 were obtained by
usingMaplef. Approximations tow?, were then calculated from the relation
2f' /
af, = ?(Zﬂnx -2—f) (28)
which follows from inversion of equation (26). These approximations may be compared in
table 2 with the approximations obtained from the asymptotic formula (22). The increasing

accuracy of the asymptotic formula for fixgd andx and increasing is evident from the
table.

6. Conclusions

Analytical solutions of the radial Sabdinger equation for the bound-state Aharonov—Bohm
effect in a cylindrical shell are known only in certain simple cases and even in these cases
there is no formula for calculating the energy eigenvalues exactly. We have derived an
asymptotic formula that enables numerical approximations to the energy eigenvalues to be
obtained when the radial quantum number is large and the other quantum numbers and
parameters of the system are fixed. The errors involved in making these approximations
form an¢? sequence with terms labelled by the radial quantum number.

The general solution of the radial equation is expressible in terms of Bessel functions
for the case in which there is no field in the cylindrical shell. Numerical approximations
obtained by using this solution confirm the validity of the asymptotic formula for this case;
in particular, for the parameter values used, the formula becomes more accurate as the
radial quantum number increases. Similar numerical confirmation was obtained for the case
in which there is a constant non-zero field in the shell as well as a confined field inside
the inner cylinder. Here the general solution of the radial equation is expressible in terms
of confluent hypergeometric functions. The computer algebra sybtapie was used to

1 The hypergeometric functions may be evaluatediaple by first entering the commaneadlib(hypergeom)
and then using theypergeomcommand.



9554 R A Samandra ahW P Healy

obtain numerical solutions of the transcendental equations resulting from imposition of the
boundary conditions in these two cases.
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